Articles
![]() |
06/03/2014--
06/03/2014
Rooted trees, non-rooted trees and hamiltonian B-series
We explore the relationship between (non-planar) rooted trees and free trees,
i.e. without root. We give in particular, for non-rooted trees, a substitute
for the Lie bracket given by the antisymmetrization of the pre-Lie product.
Geir Bogfjellmo
Charles H. Curry
Dominique Manchon
03/16/2015--
03/12/2015
The Hopf algebra of finite topologies and mould composition
We exhibit an internal coproduct on the Hopf algebra of finite topologies
recently defined by the second author, C. Malvenuto and F. Patras, dual to the
composition of "quasi-ormoulds", which are the natural version of J. Ecalle's
moulds in this setting. All these results are displayed in the linear species
formalism.
Frédéric Fauvet
Loïc Foissy
Dominique Manchon
09/29/2016--
04/27/2016
Operads of finite posets
We describe four natural operad structures on the vector space generated by
isomorphism classes of finite posets. The three last ones are set-theoretical
and can be seen as a simplified version of the first, the same way the NAP
operad behaves with respect to the pre-Lie operad. Moreover the two first ones
are isomorphic.
Frédéric Fauvet
Loïc Foissy
Dominique Manchon
11/03/2023--
11/03/2023
A twisted Hopf algebra of finite topological quandles
This paper describes some algebraic properties of the species of finite
topological quandles. We construct two twisted bialgebra structures on this
species, one of the first kind and one of the second kind. The obstruction for
the structure to match the double twisted bialgebra axioms is explicitly
described.
Mohamed Ayadi
Dominique Manchon
08/07/2024--
08/07/2024
A pattern for torsion in Khovanov homology
We prove that certain specific sum of enhanced states produce torsion of
order two in the Khovanov homology.
R. Díaz
P. M. G. Manchón
12/09/1998--
11/03/1998
Front d'onde et propagation des singularites pour un vecteur-distribution
Nous definissons le front d'onde d'un vecteur-distribution pour une
representation unitaire d'un groupe de Lie reel $G$ a l'aide du calcul
pseudo-differentiel mis au point dans un travail anterieur. Cette notion
precise celle de front d'onde d'une representation introduite par R. Howe. En
application nous donnons une condition suffisante pour qu'un
vecteur-distribution reste un vecteur-distribution pour la restriction de la
representation a un sous-groupe ferme $H$, et nous donnons un theoreme de
propagation des singularites pour les vecteurs-distribution.
Dominique Manchon
02/09/2001--
03/01/2000
Poisson bracket, deformed bracket and gauge group actions in Kontsevich deformation quantization
We express the difference between Poisson bracket and deformed bracket for
Kontsevich deformation quantization on any Poisson manifold by means of second
derivative of the formality quasi-isomorphism. The counterpart on star products
of the action of formal diffeomorphisms on Poisson formal bivector fields is
also investigated.
Dominique Manchon
11/06/2003--
06/25/2001
Cohomologie tangente et cup-produit pour la quantification de Kontsevich
On a flat manifold, M. Kontsevich's formality quasi-isomorphism is compatible
with cup-products on tangent cohomology spaces, in the sense that its
derivative at any formal Poisson 2-tensor induces an isomorphism of graded
commutative algebras from Poisson cohomology space to Hochschild cohomology
space relative to the associated deformed multiplication. We give here a
detailed proof of this result, with signs and orientations precised.
Dominique Manchon
Charles Torossian
05/16/2006--
08/30/2004
Hopf algebras, from basics to applications to renormalization
An extended version of a series of lectures given at Bogota in december 2002.
It consists in a presentation of some aspects of Connes' and Kreimer's work on
renormalization in the context of general connected Hopf algebras, in
particular Birkhoff decomposition and, in the graded case, the scattering-type
formula.
Dominique Manchon
06/24/1996--
06/24/1996
L'algebre de Hopf bitensorielle
Nous construisons pour tout corps k de caracteristique zero un foncteur de la
categorie des k-espaces vectoriels dans la categorie des k-algebres de Hopf
pointees, qui a tout espace vectoriel V associe son algebre de Hopf
bitensorielle pointee A(V). Cette algebre de Hopf est graduee, verifie une
propriete universelle, et contient une famille remarquable d'elements primitifs
P. Nous conjecturons que P engendre l'algebre de Lie des elements primitifs de
A(V). Enfin lorsque V est de dimension finie nous mettons en evidence un
couplage de Hopf entre A(V) et A(V*) dont le noyau contient l'ideal (de Hopf)
engendre par les elements de P de degre au moins egal a 2.
Dominique Manchon
|
|