Articles

06/17/2010-- 01/18/2010

Weak lensing effects in the measurement of the dark energy equation of state with LISA

The Laser Interferometer Space Antenna's (LISA's) observation of supermassive binary black holes (SMBBH) could provide a new tool for precision cosmography. Inclusion of sub-dominant signal harmonics in the inspiral signal allows for high-accuracy sky localization, dramatically improving the chances of finding the host galaxy and obtaining its redshift. A SMBBH merger can potentially have component masses from a wide range ($10^5 - 10^8\,\Ms$) over which parameter accuracies vary considerably. We perform an in-depth study in order to understand (i) what fraction of possible SMBBH mergers allow for sky localization, depending on the parameters of the source, and (ii) how accurately $w$ can be measured when the host galaxy can be identified. We also investigate how accuracies on all parameters improve when a knowledge of the sky position can be folded into the estimation of errors. We find that $w$ can be measured to within a few percent in most cases, if the only error in measuring the luminosity distance is due to LISA's instrumental noise and the confusion background from Galactic binaries. However, weak lensing-induced errors will severely degrade the accuracy with which $w$ can be obtained, emphasizing that methods to mitigate weak lensing effects would be required to take advantage of LISA's full potential.
Chris Van Den Broeck M. Trias B. S. Sathyaprakash A. M. Sintes
04/10/1999-- 04/10/1999

Discrete breathers in nonlinear lattices: Experimental detection in a Josephson array

We present an experimental study of discrete breathers in an underdamped Josephson-junction array. Breathers exist under a range of dc current biases and temperatures, and are detected by measuring dc voltages. We find the maximum allowable bias current for the breather is proportional to the array depinning current while the minimum current seems to be related to a junction retrapping mechanism. We have observed that this latter instability leads to the formation of multi-site breather states in the array. We have also studied the domain of existence of the breather at different values of the array parameters by varying the temperature.
E. Trias J. J. Mazo T. P. Orlando
04/12/1999-- 04/12/1999

Discrete breathers in dc biased Josephson-junction arrays

We propose a method to excite and detect a rotor localized mode (rotobreather) in a Josephson-junction array biased by dc currents. In our numerical studies of the dynamics we have used experimentally realizable parameters and included self-inductances. We have uncovered two families of rotobreathers. Both types are stable under thermal fluctuations and exist for a broad range of array parameters and sizes including arrays as small as a single plaquette. We suggest a single Josephson-junction plaquette as an ideal system to experimentally investigate these solutions.
J. J. Mazo E. Trias T. P. Orlando
11/29/1999-- 11/29/1999

Depinning of kinks in a Josephson-junction ratchet array

We have measured the depinning of trapped kinks in a ratchet potential using a fabricated circular array of Josephson junctions. Our ratchet system consists of a parallel array of junctions with alternating cell inductances and junctions areas. We have compared this ratchet array with other circular arrays. We find experimentally and numerically that the depinning current depends on the direction of the applied current in our ratchet ring. We also find other properties of the depinning current versus applied field, such as a long period and a lack of reflection symmetry, which we can explain analytically.
E. Trias J. J. Mazo F. Falo T. P. Orlando
10/07/2021-- 10/07/2021

Energy preserving multiphase flows: Application to falling films

The numerical simulation of multiphase flows presents several challenges, namely the transport of different phases within de domain and the inclusion of capillary effects. Here, these are approached by enforcing a discrete physics-compatible solution. Extending our previous work on the discretization of surface tension [N. Valle, F. X. Trias, and J. Castro. An energy-preserving level set method for multiphase flows. J. Comput. Phys., 400:108991, 2020] with a consistent mass and momentum transfer a fully energy-preserving multiphase flow method is presented. This numerical technique is showcased within the simulation of a falling film under several working conditions related to the normal operation of LiBr absorption chillers.
Nicol'as Valle F. Xavier Trias Jes'us Castro
07/15/2025-- 07/15/2025

The $\ell$-modular local theta correspondence

We study the validity of the local theta correspondence over a non-archimedean local field in the context of modular representation theory \textit{i.e.} for representations with coefficient fields of positive characteristic. For a symplectic-orthogonal or a unitary-unitary dual pair over a $p$-adic field, we obtain a bijective correspondence, as long as the characteristic of the coefficient field is large enough compared to the size of the dual pair, and call it the modular local theta correspondence.
Justin Trias
11/05/2023-- 04/06/2023

Synthesizing Anyone, Anywhere, in Any Pose

We address the task of in-the-wild human figure synthesis, where the primary goal is to synthesize a full body given any region in any image. In-the-wild human figure synthesis has long been a challenging and under-explored task, where current methods struggle to handle extreme poses, occluding objects, and complex backgrounds. Our main contribution is TriA-GAN, a keypoint-guided GAN that can synthesize Anyone, Anywhere, in Any given pose. Key to our method is projected GANs combined with a well-crafted training strategy, where our simple generator architecture can successfully handle the challenges of in-the-wild full-body synthesis. We show that TriA-GAN significantly improves over previous in-the-wild full-body synthesis methods, all while requiring less conditional information for synthesis (keypoints \vs DensePose). Finally, we show that the latent space of TriA-GAN is compatible with standard unconditional editing techniques, enabling text-guided editing of generated human figures.
Håkon Hukkelås Frank Lindseth
09/19/2025-- 09/19/2025

The Rhythm In Anything: Audio-Prompted Drums Generation with Masked Language Modeling

Musicians and nonmusicians alike use rhythmic sound gestures, such as tapping and beatboxing, to express drum patterns. While these gestures effectively communicate musical ideas, realizing these ideas as fully-produced drum recordings can be time-consuming, potentially disrupting many creative workflows. To bridge this gap, we present TRIA (The Rhythm In Anything), a masked transformer model for mapping rhythmic sound gestures to high-fidelity drum recordings. Given an audio prompt of the desired rhythmic pattern and a second prompt to represent drumkit timbre, TRIA produces audio of a drumkit playing the desired rhythm (with appropriate elaborations) in the desired timbre. Subjective and objective evaluations show that a TRIA model trained on less than 10 hours of publicly-available drum data can generate high-quality, faithful realizations of sound gestures across a wide range of timbres in a zero-shot manner.
Patrick O'Reilly Julia Barnett Hugo Flores García Annie Chu Nathan Pruyne Prem Seetharaman Bryan Pardo
05/16/2023-- 05/16/2023

Hunting for gamma-ray emission from Fast Radio Bursts

Fast radio bursts (FRBs) are a recently discovered class of GHz-band, ms-duration, Jy-level-flux astrophysical transients, which origin is still a mystery. Exploring their gamma-ray counterpart is crucial for constraining their origin and emission mechanism. Thanks to more than 13 years of gamma-ray data collected by the Fermi-Large Area Telescope, and to more than 1000 FRB events, one of the largest sample created as of today, we perform the largest and deepest search for gamma-ray emission from FRB sources to date. In addition to the study of individual FRB events on different time-scales (from few seconds up to several years), we performed, for the first time, a stacking analysis on the full sample of FRB events as well as a search for triplet photons in coincidence with the radio event. We do not detect significant emission, reporting the most stringent constraints, on short time scales, for the FRB-like emission from SGR 1935+2154 with $E<10^{41}$ erg, corresponding to a factor $<10^7$ with respect to the emitted radio energy. For the stacked signal of steady emission from all repeaters, the obtained upper limit (UL) on the FRBs luminosity ($L<1.6\times10^{43}$ erg s$^{-1}$) is more than two orders of magnitudes lower than those derived from the individual sources. Finally, no individual or triplet photons have been significantly associated with FRB events. We derived the LAT ms energy sensitivity to be $E<10^{47}$ (D$_L$/150 Mpc)$^2$ erg, ruling out a gamma-ray-to-radio energy ratio greater than $10^9$ on ms timescales. The results reported here represent the most stringent UL reported so far on the high-energy emission from FRBs on short and long time scales, as well as on cumulative emission and individual photon searches. While the origin of FRBs is still unclear, our work provides important constraints for FRB modeling, which might shed light on their emission mechanism.
G. Principe L. Di Venere M. Negro N. Di Lalla N. Omodei R. Di Tria M. N. Mazziotta F. Longo
03/30/2009-- 11/06/2008

Massive Black Hole Binary Inspirals: Results from the LISA Parameter Estimation Taskforce

The LISA Parameter Estimation (LISAPE) Taskforce was formed in September 2007 to provide the LISA Project with vetted codes, source distribution models, and results related to parameter estimation. The Taskforce's goal is to be able to quickly calculate the impact of any mission design changes on LISA's science capabilities, based on reasonable estimates of the distribution of astrophysical sources in the universe. This paper describes our Taskforce's work on massive black-hole binaries (MBHBs). Given present uncertainties in the formation history of MBHBs, we adopt four different population models, based on (i) whether the initial black-hole seeds are small or large, and (ii) whether accretion is efficient or inefficient at spinning up the holes. We compare four largely independent codes for calculating LISA's parameter-estimation capabilities. All codes are based on the Fisher-matrix approximation, but in the past they used somewhat different signal models, source parametrizations and noise curves. We show that once these differences are removed, the four codes give results in extremely close agreement with each other. Using a code that includes both spin precession and higher harmonics in the gravitational-wave signal, we carry out Monte Carlo simulations and determine the number of events that can be detected and accurately localized in our four population models.
K. G. Arun Stas Babak Emanuele Berti Neil Cornish Curt Cutler Jonathan Gair Scott A. Hughes Bala R. Iyer Ryan N. Lang Ilya Mandel Edward K. Porter Bangalore S. Sathyaprakash Siddhartha Sinha Alicia M. Sintes Miquel Trias Chris Van Den Broeck Marta Volonteri


with thanks to arxiv.org/