Articles

01/25/2008-- 01/25/2008

How do binaries affect the derived dynamical mass of a star cluster?

The dynamical mass of a star cluster can be derived from the virial theorem, using the measured half-mass radius and line-of-sight velocity dispersion of the cluster. However, this dynamical mass may be a significant overestimation of the cluster mass if the contribution of the binary orbital motion is not taken into account. In these proceedings we describe the mass overestimation as a function of cluster properties and binary population properties, and briefly touch the issue of selection effects. We find that for clusters with a measured velocity dispersion of sigma > 10 km/s the presence of binaries does not affect the dynamical mass significantly. For clusters with sigma < 1 km/s (i.e., low-density clusters), the contribution of binaries to sigma is significant, and may result in a major dynamical mass overestimation. The presence of binaries may introduce a downward shift of Delta log(L/Mdyn) = 0.05-0.4 in the log(L/Mdyn) vs. age diagram.
M. B. N. Kouwenhoven R. de Grijs
01/23/2008-- 01/23/2008

The young star cluster system of the Antennae galaxies

The study of young star cluster (YSC) systems, preferentially in starburst and merging galaxies, has seen great interest in the recent past, as it provides important input to models of star formation. However, even some basic properties (like the luminosity function [LF]) of YSC systems are still under debate. Here we study the photometric properties of the YSC system in the nearest major merger system, the Antennae galaxies. We find evidence for the existence of a statistically significant turnover in the LF.
Peter Anders Uta Fritze Richard de Grijs
04/30/1998-- 04/30/1998

The global structure of galactic discs

A statistical study of global galaxy parameters can help to improve our understanding of galaxy formation processes. In this paper we present the analysis of global galaxy parameters based on optical and near-infrared observations of a large sample of edge-on disc galaxies. We found a correlation between the ratio of the radial to vertical scale parameter and galaxy type: galaxies become systematically thinner when going from S0's to Sc's, whereas the distribution seems to level off for later types. The observed scale length ratios (and thus the radial colour gradients) largely represent the galaxies' dust content. On average the colour gradients indicated by the scale length ratios increase from type Sa to at least type Sc. For galaxy types later than Sc, the average colour gradient seems to decrease again. The distribution of K-band (edge-on) disc central surface brightnesses is rather flat, although with a large scatter. However, the latest-type sample galaxies (T > 6) show an indication that their average disc central surface brightnesses may be fainter than those of the earlier types. This effect is probably not the result of dust extinction.
R. de Grijs
02/17/2003-- 02/17/2003

Chemical evolution of the M82 B fossil starburst

M82 B is an old starburst site located in the eastern part of the M82 disc. We derive the distributions of age and metallicity of the star clusters located in this region of M82 by using theoretical evolutionary population synthesis models. Our analysis is based on the comparison of the $BVIJ$ photometry obtained by de Grijs et al. (2001) with the colours of single-generation stellar populations. We show that M82 B went through a chemical enrichment phase up to super-solar metallicities around the time of the last close encounter between M82 and its large neighbour galaxy M81. We date and confirm the event triggering the enhanced cluster formation at about 1 Gyr ago. At almost the same time an additional, distinct subpopulation of metal-poor clusters formed in the part of M82 B nearest to the galactic centre. The formation of these peculiar clusters may be related to infall of circumgalactic gas onto M82 B.
G. Parmentier R. de Grijs G. Gilmore
04/11/2008-- 04/11/2008

Star cluster versus field star formation in the nucleus of the prototype starburst galaxy M82

We analyse high-resolution Hubble Space Telescope/Advanced Camera for Surveys imaging of the nuclear starburst region of M82, obtained as part of the Hubble Heritage mosaic made of this galaxy, in four filters (Johnson-Cousins equivalent B, V, and I broad bands, and an Halpha narrow-band filter), as well as subsequently acquired U-band images. We find a complex system of ~150 star clusters in the inner few 100 pc of the galaxy. We do not find any conclusive evidence of a cluster-formation epoch associated with the most recent starburst event, believed to have occurred about 4-6 Myr ago. This apparent evidence of decoupling between cluster and field-star formation is consistent with the view that star cluster formation requires special conditions. However, we strongly caution, and provide compelling evidence, that the `standard' simple stellar population analysis method we have used significantly underestimates the true uncertainties in the derived ages due to stochasticity in the stellar initial mass function and the corresponding sampling effects.
S. Barker R. de Grijs M. Cervino
11/04/2009-- 11/04/2009

Star cluster dynamics

Dynamical evolution plays a key role in shaping the current properties of star clusters and star cluster systems. A detailed understanding of the effects of evolutionary processes is essential to be able to disentangle the properties which result from dynamical evolution from those imprinted at the time of cluster formation. In this review, we focus our attention on globular clusters and review the main physical ingredients driving their early and long-term evolution, describe the possible evolutionary routes and show how cluster structure and stellar content are affected by dynamical evolution.
Enrico Vesperini
11/25/2016-- 11/25/2016

Variability in the Milky Way: Contact binaries as diagnostic tools

We used the 50 cm Binocular Network (50BiN) telescope at Delingha Station (Qinghai Province) of Purple Mountain Observatory (Chinese Academy of Sciences) to obtain simultaneous $V$- and $R$-band observations of the old open cluster NGC 188. Our aim was a search for populations of variable stars. We derived light-curve solutions for six W Ursae Majoris (W UMa) eclipsing-binary systems and estimated their orbital parameters. The resulting distance to the W UMas is independent of the physical characteristics of the host cluster. We next determined the current best period--luminosity relations for contact binaries (CBs; scatter $\sigma < 0.10$ mag). We conclude that CBs can be used as distance tracers with better than 5\% uncertainty. We apply our new relations to the 102 CBs in the Large Magellanic Cloud, which yields a distance modulus of $(m-M_V)_0=18.41\pm0.20$ mag.
Richard de Grijs Xiaodian Chen Licai Deng
11/04/2009-- 11/04/2009

The physics and modes of star cluster formation: observations

Stellar clusters are born in cold and dusty molecular clouds and the youngest clusters are embedded to various degrees in dusty dark molecular material. Such embedded clusters can be considered protocluster systems. The most deeply buried examples are so heavily obscured by dust that they are only visible at infrared wavelengths. These embedded protoclusters constitute the nearest laboratories for direct astronomical investigation of the physical processes of cluster formation and early evolution. I review the present state of empirical knowledge concerning embedded cluster systems and discuss the implications for understanding their formation and subsequent evolution to produce bound stellar clusters.
Charles J. Lada
11/04/2009-- 11/04/2009

The physics and modes of star cluster formation: simulations

We review progress in numerical simulations of star cluster formation. These simulations involve the bottom-up assembly of clusters through hierarchical mergers, which produces a fractal stellar distribution at young (~0.5 Myr) ages. The resulting clusters are predicted to be mildly aspherical and highly mass-segregated, except in the immediate aftermath of mergers. The upper initial mass function within individual clusters is generally somewhat flatter than for the aggregate population. Recent work has begun to clarify the factors that control the mean stellar mass in a star-forming cloud and also the efficiency of star formation. The former is sensitive to the thermal properties of the gas while the latter depends both on the magnetic field and the initial degree of gravitational boundedness of the natal cloud. Unmagnetized clouds that are initially bound undergo rapid collapse, which is difficult to reverse by ionization feedback or stellar winds.
Cathie Clarke
11/04/2009-- 11/04/2009

Chemical evolution of star clusters

I discuss the chemical evolution of star clusters, with emphasis on old globular clusters, in relation to their formation histories. Globular clusters clearly formed in a complex fashion, under markedly different conditions from any younger clusters presently known. Those special conditions must be linked to the early formation epoch of the Galaxy and must not have occurred since. While a link to the formation of globular clusters in dwarf galaxies has been suggested, present-day dwarf galaxies are not representative of the gravitational potential wells within which the globular clusters formed. Instead, a formation deep within the proto-Galaxy or within dark-matter minihaloes might be favoured. Not all globular clusters may have formed and evolved similarly. In particular, we may need to distinguish Galactic halo from Galactic bulge clusters.
Jacco Th. van Loon


with thanks to arxiv.org/