Articles
![]() |
01/07/2023--
01/07/2023
Design of new helium vessel and tuner for CEPC 650 MHz 2 cell cavity
CEPC will use 650 MHz cavities for the collider. Each collider cryomodule
contains six 650 MHz 2-cell cavities, which is totally new. Therefore, new
helium vessel and tuner are designed for the 650 MHz 2-cell cavity. Also, a
test cryomodule, which consists of two 650 MHz 2-cell cavities, has begun as
the first step to the full scale cryomodule. This paper mainly focuses on the
structure design of Helium vessel and tuner for the 2-cell cavity.
Z. H. Mi
Z. Q. Li
P. Sha
J. Y. Zhai
F. S. He
Q. Ma
B. Q. Liu
X. Y. Zhang
R. X. Han
F. B. Meng
H. J. Zheng
02/06/2019--
10/12/2018
Evolution of Star-forming Galaxies from z = 0.7 to 1.2 with eBOSS Emission-line Galaxies
We study the evolution of star-forming galaxies with $10^{10}
M_\odot<M_*<10^{11.6} M_\odot$ over the redshift range of 0.7<z<1.2 using the
emission line galaxies (ELGs) in the extended Baryon Oscillation Spectroscopic
Survey (eBOSS). By applying the incomplete conditional stellar mass function
(ICSMF) model proposed in Guo et al., we simultaneously constrain the sample
completeness, the stellar--halo mass relation (SHMR) and the quenched galaxy
fraction. We obtain the intrinsic stellar mass functions for star-forming
galaxies in the redshift bins of 0.7<z<0.8, 0.8<z<0.9, 0.9<z<1.0 and 1.0<z<1.2,
as well as the stellar mass function for all galaxies in the redshift bin of
0.7<z<0.8. We find that the eBOSS ELG sample only selects about 1%-10% of the
star-forming galaxy population at the different redshifts, with the lower
redshift samples to be more complete. There is only weak evolution in the SHMR
of the ELGs from z=1.2 to z=0.7, as well as the intrinsic galaxy stellar mass
functions for lower-mass galaxies of $M_*<10^{11} M_\odot$. There is
significant decrease of the stellar mass function for star-forming galaxies
with redshift at the massive end. Our best-fitting models show that the central
ELGs at these redshifts live in halos of mass $M\sim10^{12} M_\odot$ while the
satellite ELGs occupy slightly more massive halos of $M\sim10^{12.6} M_\odot$.
The average satellite fraction of the observed ELGs varies from 13% to 17%,
with the galaxy bias increasing from 1.1 to 1.4 from z=0.7 to 1.2.
Hong Guo
Xiaohu Yang
Anand Raichoor
Zheng Zheng
Johan Comparat
V. Gonzalez-Perez
Jean-Paul Kneib
Donald P. Schneider
Dmitry Bizyaev
Daniel Oravetz
Audrey Oravetz
Kaike Pan
05/11/2000--
05/11/2000
Five High-Redshift Quasars Discovered in Commissioning Imaging Data of the Sloan Digital Sky Survey
We report the discovery of five quasars with redshifts of 4.67 - 5.27 and
z'-band magnitudes of 19.5-20.7 M_B ~ -27. All were originally selected as
distant quasar candidates in optical/near-infrared photometry from the Sloan
Digital Sky Survey (SDSS), and most were confirmed as probable high-redshift
quasars by supplementing the SDSS data with J and K measurements. The quasars
possess strong, broad Lyman-alpha emission lines, with the characteristic sharp
cutoff on the blue side produced by Lyman-alpha forest absorption. Three
quasars contain strong, broad absorption features, and one of them exhibits
very strong N V emission. The amount of absorption produced by the Lyman-alpha
forest increases toward higher redshift, and that in the z=5.27 object (D_A ~
0.7) is consistent with a smooth extrapolation of the absorption seen in lower
redshift quasars. The high luminosity of these objects relative to most other
known objects at z >~ 5 makes them potentially valuable as probes of early
quasar properties and of the intervening intergalactic medium.
W. Zheng
Z. I. Tsvetanov
D. P. Schneider
X. Fan
R. H. Becker
M. Davis
R. L. White
M. A. Strauss
J. Annis
N. A. Bahcall
A. J. Connolly
I. Csabai
A. F. Davidsen
M. Fukugita
J. E. Gunn
T. M. Heckman
G. S. Hennessy
Z. Ivezic
G. R. Knapp
E. Peng
A. S. Szalay
A. R. Thakar
B. Yanny
D. G. York
12/07/2005--
12/07/2005
Detecting Faint Galaxies by Stacking at 24 micron
We stack Spitzer 24 micron images for ~7000 galaxies with 0.1<z<1 in the
Chandra Deep Field South to probe the thermal dust emission in low-luminosity
galaxies over this redshift range. Through stacking, we can detect mean 24
micron fluxes that are more than an order of magnitude below the individual
detection limit. We find that the correlations for low and moderate luminosity
galaxies between the average L_IR/L_UV and rest-frame B-band luminosity, and
between the star formation rate (SFR) and L_IR/L_UV, are similar to those in
the local Universe. This verifies that oft-used assumption in deep UV/optical
surveys that the dust obscuration-SFR relation for galaxies with SFR < 20 solar
mass per year varies little with epoch. We have used this relation to derive
the cosmic IR luminosity density from z=1 to z=0.1. The results also
demonstrate directly that little of the bolometric luminosity of the galaxy
population arises from the faint end of the luminosity function, indicating a
relatively flat faint-end slope of the IR luminosity function with a power law
index of 1.2+-0.3.
X. Z. Zheng
E. F. Bell
H. -W. Rix
C. Papovich
E. Le Floc'h
G. H. Rieke
P. G. Pérez-González
02/05/2009--
02/05/2009
Agterberg, Zheng, and Mukherjee Reply
Reply to Ikeda (arXiv:0712.3341).
D. F. Agterberg
Z. Zheng
S. Mukherjee
03/27/2020--
12/28/2019
Observation of $D^+\toηηπ^+$ and improved measurement of $D^{0(+)}\toηπ^+π^{-(0)}$
Using an $e^+e^-$ annihilation data sample corresponding to an integrated
luminosity of $2.93\,\rm fb^{-1}$ collected at the center-of-mass energy of
3.773\,GeV with the BESIII detector, we measure the absolute branching
fractions of $D^+\to\eta\eta\pi^+$, $D^+\to\eta\pi^+\pi^0$, and
$D^0\to\eta\pi^+\pi^-$ to be $(2.96 \pm 0.24 \pm 0.13)\times 10^{-3}$, $(2.23
\pm 0.15 \pm 0.11)\times 10^{-3}$, and $(1.20 \pm 0.07 \pm 0.04)\times
10^{-3}$, respectively, where the first uncertainties are statistical and the
second ones systematic. The $D^+\to\eta\eta\pi^+$ decay is observed for the
first time and the branching fractions of $D^{+(0)}\to\eta\pi^+\pi^{0(-)}$ are
measured with much improved precision. In addition we test for $CP$ asymmetries
in the separated charge-conjugate branching fractions; no evidence of $CP$
violation is found.
BESIII Collaboration
10/02/2020--
07/15/2020
Observation of the Doubly Cabibbo-Suppressed Decay $D^+\to K^+π^+π^-π^0$ and Evidence for $D^+\to K^+ω$
Using $2.93 \rm fb^{-1}$ of $e^+e^-$ collision data collected at a
center-of-mass energy of 3.773 GeV with the BESIII detector, the first
observation of the doubly Cabibbo-suppressed decay $D^+\to K^+\pi^+\pi^-\pi^0$
is reported. After removing decays that contain narrow intermediate resonances,
including $D^+\to K^+\eta$, $D^+\to K^+\omega$, and $D^+\to K^+\phi$, the
branching fraction of the decay $D^+\to K^+\pi^+\pi^-\pi^0$ is measured to be
$(1.13 \pm 0.08_{\rm stat} \pm 0.03_{\rm syst})\times 10^{-3}$. The ratio of
branching fractions of $D^+\to K^+\pi^+\pi^-\pi^0$ over $D^+\to
K^-\pi^+\pi^+\pi^0$ is found to be $(1.81\pm0.15)$\%, which corresponds to
$(6.28\pm0.52)\tan^4\theta_C$, where $\theta_C$ is the Cabibbo mixing angle.
This ratio is significantly larger than the corresponding ratios for other
doubly Cabibbo-suppressed decays. The asymmetry of the branching fractions of
charge-conjugated decays $D^\pm\to K^\pm\pi^\pm\pi^\mp\pi^0$ is also
determined, and no evidence of $CP$ violation is found. In addition, the first
evidence of the $D^+\to K^+\omega$ decay, with a statistical significance of
3.3$\sigma$, is presented and its decay branching fraction is determined to be
$({5.7^{+2.5}_{-2.1}}_{\rm stat}\pm0.2_{\rm syst})\times10^{-5}$.
BESIII Collaboration
06/21/2020--
04/29/2020
Measurements of Absolute Branching Fractions of Fourteen Exclusive Hadronic $D$ Decays to $η$
Using $2.93\,\rm fb^{-1}$ of $e^+e^-$ collision data taken at a
center-of-mass energy of 3.773\,GeV with the BESIII detector, we report the
first measurements of the absolute branching fractions of fourteen hadronic
$D^{0(+)}$ decays to exclusive final states with an $\eta$, e.g., $D^0\to
K^-\pi^+\eta$, $K^0_S\pi^0\eta$, $K^+K^-\eta$, $K^0_SK^0_S\eta$,
$K^-\pi^+\pi^0\eta$, $K^0_S\pi^+\pi^-\eta$, $K^0_S\pi^0\pi^0\eta$, and
$\pi^+\pi^-\pi^0\eta$; $D^+\to K^0_S\pi^+\eta$, $K^0_SK^+\eta$,
$K^-\pi^+\pi^+\eta$, $K^0_S\pi^+\pi^0\eta$, $\pi^+\pi^+\pi^-\eta$, and
$\pi^+\pi^0\pi^0\eta$. Among these decays, the $D^0\to K^-\pi^+\eta$ and
$D^+\to K^0_S\pi^+\eta$ decays have the largest branching fractions, which are
$\mathcal{B} (D^0\to K^-\pi^+\eta )=(1.853\pm0.025_{\rm stat}\pm0.031_{\rm
syst})\%$ and $\mathcal{B}(D^+\to K^0_S\pi^+\eta)=(1.309\pm0.037_{\rm
stat}\pm0.031_{\rm syst})\%$, respectively. We also determine the $CP$
asymmetries for the six decays with highest event yields. No evidence of $CP$
violation is found.
BESIII Collaboration
06/09/2020--
03/27/2020
First Observation of $D^+\to ημ^+ν_μ$ and Measurement of its Decay Dynamics
By analyzing a data sample corresponding to an integrated luminosity of
$2.93~\mathrm{fb}^{-1}$ collected at a center-of-mass energy of 3.773 GeV with
the BESIII detector, we measure for the first time the absolute branching
fraction of the $D^+\to \eta \mu^+\nu_\mu$ decay to be ${\mathcal B}_{D^+\to
\eta \mu^+\nu_\mu}=(10.4\pm1.0_{\rm stat}\pm0.5_{\rm syst})\times 10^{-4}$.
Using the world averaged value of ${\mathcal B}_{D^+\to \eta e^+\nu_e}$, the
ratio of the two branching fractions is determined to be ${\mathcal B}_{D^+\to
\eta \mu^+\nu_\mu}/{\mathcal B}_{D^+\to \eta e^+\nu_e}=0.91\pm0.13$, which
agrees with the theoretical expectation of lepton flavor universality within
uncertainty. Here, the uncertainty is the sum in quadrature of the statistical
and systematic uncertainties. By studying the differential decay rates in five
four-momentum transfer intervals, we obtain the product of the hadronic form
factor $f^{\eta}_{+}(0)$ and the $c\to d$ Cabibbo-Kobayashi-Maskawa matrix
element $|V_{cd}|$ to be $f_{+}^\eta (0)|V_{cd}|=0.087\pm0.008_{\rm
stat}\pm0.002_{\rm syst}$. Taking the input of $|V_{cd}|$ from the global fit
in the standard model, we determine $f_{+}^\eta (0)=0.39\pm0.04_{\rm
stat}\pm0.01_{\rm syst}$. On the other hand, using the value of $f_+^{\eta}(0)$
calculated in theory, we find $|V_{cd}|=0.242\pm0.022_{\rm stat}\pm0.006_{\rm
syst}\pm0.033_{\rm theory}$.
BESIII Collaboration
07/04/2016--
07/04/2016
Determination of the number of $J/ψ$ events with inclusive $J/ψ$ decays
A measurement of the number of $J/\psi$ events collected with the BESIII
detector in 2009 and 2012 is performed using inclusive decays of the $J/\psi$ .
The number of $J/\psi$ events taken in 2009 is recalculated to be
$(223.7\pm1.4)\times 10^6$, which is in good agreement with the previous
measurement, but with significantly improved precision due to improvements in
the BESIII software. The number of $J/\psi$ events taken in 2012 is determined
to be $(1086.9\pm 6.0)\times 10^6$. In total, the number of $J/\psi$ events
collected with the BESIII detector is measured to be $(1310.6\pm 7.0)\times
10^6$, where the uncertainty is dominated by systematic effects and the
statistical uncertainty is negligible.
M. Ablikim
M. N. Achasov
X. C. Ai
O. Albayrak
M. Albrecht
D. J. Ambrose
A. Amoroso
F. F. An
Q. An
J. Z. Bai
R. Baldini Ferroli
Y. Ban
D. W. Bennett
J. V. Bennett
M. Bertani
D. Bettoni
J. M. Bian
F. Bianchi
E. Boger
I. Boyko
R. A. Briere
H. Cai
X. Cai
O. Cakir
A. Calcaterra
G. F. Cao
S. A. Cetin
J. F. Chang
G. Chelkov
G. Chen
H. S. Chen
H. Y. Chen
J. C. Chen
M. L. Chen
S. J. Chen
X. Chen
X. R. Chen
Y. B. Chen
H. P. Cheng
X. K. Chu
G. Cibinetto
H. L. Dai
J. P. Dai
A. Dbeyssi
D. Dedovich
Z. Y. Deng
A. Denig
I. Denysenko
M. Destefanis
F. De Mori
Y. Ding
C. Dong
J. Dong
L. Y. Dong
M. Y. Dong
Z. L. Dou
S. X. Du
P. F. Duan
J. Z. Fan
J. Fang
S. S. Fang
X. Fang
Y. Fang
R. Farinelli
L. Fava
O. Fedorov
F. Feldbauer
G. Felici
C. Q. Feng
E. Fioravanti
M. Fritsch
C. D. Fu
Q. Gao
X. L. Gao
X. Y. Gao
Y. Gao
Z. Gao
I. Garzia
K. Goetzen
L. Gong
W. X. Gong
W. Gradl
M. Greco
M. H. Gu
Y. T. Gu
Y. H. Guan
A. Q. Guo
L. B. Guo
Y. Guo
Y. P. Guo
Z. Haddadi
A. Hafner
S. Han
X. Q. Hao
F. A. Harris
K. L. He
T. Held
Y. K. Heng
Z. L. Hou
C. Hu
H. M. Hu
J. F. Hu
T. Hu
Y. Hu
G. S. Huang
J. S. Huang
X. T. Huang
Y. Huang
T. Hussain
Q. Ji
Q. P. Ji
X. B. Ji
X. L. Ji
L. W. Jiang
X. S. Jiang
X. Y. Jiang
J. B. Jiao
Z. Jiao
D. P. Jin
S. Jin
T. Johansson
A. Julin
N. Kalantar-Nayestanaki
X. L. Kang
X. S. Kang
M. Kavatsyuk
B. C. Ke
P. Kiese
R. Kliemt
B. Kloss
O. B. Kolcu
B. Kopf
M. Kornicer
A. Kupsc
W. Kühn
J. S. Lange
M. Lara
P. Larin
C. Leng
C. Li
Cheng Li
D. M. Li
F. Li
F. Y. Li
G. Li
H. B. Li
J. C. Li
Jin Li
K. Li
K. Li
Lei Li
P. R. Li
Q. Y. Li
T. Li
W. D. Li
W. G. Li
X. L. Li
X. N. Li
X. Q. Li
Z. B. Li
H. Liang
Y. F. Liang
Y. T. Liang
G. R. Liao
D. X. Lin
B. J. Liu
C. X. Liu
D. Liu
F. H. Liu
Fang Liu
Feng Liu
H. B. Liu
H. H. Liu
H. H. Liu
H. M. Liu
J. Liu
J. B. Liu
J. P. Liu
J. Y. Liu
K. Liu
K. Y. Liu
L. D. Liu
P. L. Liu
Q. Liu
S. B. Liu
X. Liu
Y. B. Liu
Z. A. Liu
Zhiqing Liu
H. Loehner
X. C. Lou
H. J. Lu
J. G. Lu
Y. Lu
Y. P. Lu
C. L. Luo
M. X. Luo
T. Luo
X. L. Luo
X. R. Lyu
F. C. Ma
H. L. Ma
L. L. Ma
Q. M. Ma
T. Ma
X. N. Ma
X. Y. Ma
Y. M. Ma
F. E. Maas
M. Maggiora
Y. J. Mao
Z. P. Mao
S. Marcello
J. G. Messchendorp
J. Min
T. J. Min
R. E. Mitchell
X. H. Mo
Y. J. Mo
C. Morales Morales
N. Yu. Muchnoi
H. Muramatsu
Y. Nefedov
F. Nerling
I. B. Nikolaev
Z. Ning
S. Nisar
S. L. Niu
X. Y. Niu
S. L. Olsen
Q. Ouyang
S. Pacetti
Y. Pan
P. Patteri
M. Pelizaeus
H. P. Peng
K. Peters
J. Pettersson
J. L. Ping
R. G. Ping
R. Poling
V. Prasad
H. R. Qi
M. Qi
S. Qian
C. F. Qiao
L. Q. Qin
N. Qin
X. S. Qin
Z. H. Qin
J. F. Qiu
K. H. Rashid
C. F. Redmer
M. Ripka
G. Rong
Ch. Rosner
X. D. Ruan
V. Santoro
A. Sarantsev
M. Savrié
K. Schoenning
S. Schumann
W. Shan
M. Shao
C. P. Shen
P. X. Shen
X. Y. Shen
H. Y. Sheng
W. M. Song
X. Y. Song
S. Sosio
S. Spataro
G. X. Sun
J. F. Sun
S. S. Sun
Y. J. Sun
Y. Z. Sun
Z. J. Sun
Z. T. Sun
C. J. Tang
X. Tang
I. Tapan
E. H. Thorndike
M. Tiemens
M. Ullrich
I. Uman
G. S. Varner
B. Wang
B. L. Wang
D. Wang
D. Y. Wang
K. Wang
L. L. Wang
L. S. Wang
M. Wang
P. Wang
P. L. Wang
W. Wang
W. P. Wang
X. F. Wang
Y. D. Wang
Y. F. Wang
Y. Q. Wang
Z. Wang
Z. G. Wang
Z. H. Wang
Z. Y. Wang
T. Weber
D. H. Wei
P. Weidenkaff
S. P. Wen
U. Wiedner
M. Wolke
L. H. Wu
Z. Wu
L. Xia
L. G. Xia
Y. Xia
D. Xiao
H. Xiao
Z. J. Xiao
Y. G. Xie
Q. L. Xiu
G. F. Xu
L. Xu
Q. J. Xu
Q. N. Xu
X. P. Xu
L. Yan
W. B. Yan
W. C. Yan
Y. H. Yan
H. J. Yang
H. X. Yang
L. Yang
Y. X. Yang
M. Ye
M. H. Ye
J. H. Yin
B. X. Yu
C. X. Yu
J. S. Yu
C. Z. Yuan
W. L. Yuan
Y. Yuan
A. Yuncu
A. A. Zafar
A. Zallo
Y. Zeng
Z. Zeng
B. X. Zhang
B. Y. Zhang
C. Zhang
C. C. Zhang
D. H. Zhang
H. H. Zhang
H. Y. Zhang
J. J. Zhang
J. L. Zhang
J. Q. Zhang
J. W. Zhang
J. Y. Zhang
J. Z. Zhang
K. Zhang
L. Zhang
X. Y. Zhang
Y. Zhang
Y. H. Zhang
Y. N. Zhang
Y. T. Zhang
Yu Zhang
Z. H. Zhang
Z. P. Zhang
Z. Y. Zhang
G. Zhao
J. W. Zhao
J. Y. Zhao
J. Z. Zhao
Lei Zhao
Ling Zhao
M. G. Zhao
Q. Zhao
Q. W. Zhao
S. J. Zhao
T. C. Zhao
Y. B. Zhao
Z. G. Zhao
A. Zhemchugov
B. Zheng
J. P. Zheng
W. J. Zheng
Y. H. Zheng
B. Zhong
L. Zhou
X. Zhou
X. K. Zhou
X. R. Zhou
X. Y. Zhou
K. Zhu
K. J. Zhu
S. Zhu
S. H. Zhu
X. L. Zhu
Y. C. Zhu
Y. S. Zhu
Z. A. Zhu
J. Zhuang
L. Zotti
B. S. Zou
J. H. Zou
|
|